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Abstract

This work presents the coupling of framed structures approached by _nite elements with three!dimensional
bodies represented by the boundary element method[ The coupling is particularly dedicated to analyse three!
dimensional half space sti}ened by piles and other composite domain problems\ for which static and dynamic
cases have been taken into account[ Some numerical examples are analysed to point out the power and the
accuracy of the proposed scheme[ Þ 0888 Elsevier Science Ltd[ All rights reserved[
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0[ Introduction

Over the last few years a lot of progress has been made in boundary:_nite element coupling
techniques[ This procedure is particularly recommended to analyse soil!structure interactions\
where the advantages of each method can be taken[ The main developments regarding BEM:FEM
combinations are not discussed in this article\ but comprehensive reviews can be found\ for instance\
in Stamos and Beskos "0884# and Beer and Watson "0881#[ The progress of the boundary element
method for numerical solutions for elastodynamic problems is completely reported in two impor!
tant reviews made by Beskos "0876\ 0886# in which the major developments in that area until 0886
are resumed[ For this work\ it is also convenient to point out three recent publications] Luco and
Barros "0883#\ where a 2D BEM:FEM coupling dedicated to frequency domain problems is
presented^ Antes and Stein_eld "0881#\ dealing with 2D BEM:BEM coupling in time domain^ and
Guan and Novak "0883#\ to analyse 1D transient problems using a BEM formulation combined
with rigid strips[ The authors have given some contribution to this subject\ particularly related to
2D time domain BEM:FEM and BEM:BEM couplings applied to the following interaction cases]
plate:soil "Barreto et al[\ 0885#\ shell:soil "Coda and Venturini[\ 0885d#\ rigid foot:soil "Coda and
Venturini\ 0884a# and massive block:soil "Coda and Venturini\ 0884b#[
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In the present work\ the authors intend to show a simple procedure to connect beam _nite
elements with a three!dimensional medium described by either static or dynamic BEM algebraic
representations[ For the dynamic case\ only the time domain approach will be considered[ By using
this kind of coupling\ some important practical cases\ buildings:soil interaction\ buried steel bars
in a concrete body and other composed domains can now be accurately analysed[

The work presentation is organised into three sections[ In the _rst section\ BEM elastostatic and
elastodynamic formulations are presented\ including a discussion on the cylindrical element
adopted to describe the interface between beams and the 2D domain[ Then\ the classical _nite
element approach for framed structures\ considering both the static and dynamic cases\ are adapted
to make easy to achieve the BEM:FEM coupled model\ based on the consistent lumping matrix[
The matrix arrangement followed for this coupling makes possible to specify as unknowns the
contact forces between the beam boundary and the surface of the cylindrical hole present inside
the 2D medium[ In the third section\ the FEM:BEM coupled algebraic system of equations is
achieved by using the sub!region technique\ completed by some recommendations on the step by
step data manipulation[

Having presented the bases of the proposed BEM:FEM coupling technique\ three examples are
taken to illustrate its applicability\ accuracy and advantages[

1[ Boundary element formulation

The BEM formulations for the elastostatic and elastodynamic problems are based on Somigliana
and Gra.s| reciprocal theorems\ respectively[

For elastostatic domain V with boundary G\ one has]

Cki"S#ui"S# � gG
u�ki"S\ Q#pi"Q# dG"Q#−gG

ui"Q# p�i "S\ Q# dG"Q#¦gV
bi"q#u�ki"S\ q# dV"q#

"0#

in which bi is the body force _eld and q and s "or Q and S when de_ed along G# represent _eld and
load points\ respectively[ The star superscript denotes Kelvin|s fundamental solution and Cik is the
classical free term[

In order to transform the above integral representation into an algebraic one\ quadratic iso!
parametric boundary elements with eight nodes have been adopted to approach boundary values\
while quadratic isoparametric cells with twenty nodes were taken to approximate domain values[
It is important to describe a particular boundary element adopted in this formulation to approach
cylindrical surfaces[ That element is employed to describe the interface surface between beams and
the 2D elastic medium and also to approximate the interactive force _eld over that contact area[

Two nodes and the beam radius\ as illustrated in Fig[ 0\ de_ne the cylindrical element[ The
element geometry and the tractions acting over the surface are assumed to be linear in the
longitudinal direction and constant in the u angular co!ordinate direction[ By assuming this
approximation\ only two shape functions are required to describe the geometry and to approach
the traction values over the element\ as follows\
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Fig[ 0[ Cylindrical boundary element[

Pi � f0P
0
i ¦f1P

1
i "1a#

ui � f0U
0
i ¦f1U

1
i "1b#

xi � f0X
0
i ¦f1X

1
i ¦Rni"u# "1c#

where fk represents the linear interpolation function\ Xa
i is the local Cartesian co!ordinate\ a gives

the element nodes\ R is the beam radius and ni"u# is the unit normal vector component referred to
the cylindrical surface[

It is worth stressing that only surface forces have been approximated over the cylindrical surface
in the same sense described by Ferro and Venturini "0881# for the static case[ The interface nodes
are internal points de_ned along the beam axis\ while the interface forces are computed at nodes
de_ned over the actual beam surface^ i[e[ the integral and corresponding algebraic representations
are written for collocations de_ned along the beam axis\ while _eld points are taken over the
interface[ Displacements could be approximated as shown in expression "1#\ but it does not improve
the _nal results^ instead it increases the amount of computing[

In order to perform numerically the integrals over boundary elements\ sub!elements are adopted
following a well!known technique very often employed to solve transient problems based on
elastodynamic BEM formulations "Lachat and Watson\ 0865#[ In this technique\ _ne mesh re_ne!
ment is required when the collocation point is near the integrated element[ The sub!element mesh
can be coarser when the distance between the load point and the element\ or sub!element\ increases[
The singular integrals\ found when the collocations are de_ned over the element\ are performed
by means of a numerical procedure based on Kutt|s quadrature formula "Kutt\ 0864^ Coda and
Venturini\ 0884c#[

Taking into account the described approximations\ the following classical BEM system of
algebraic equations is achieved\

HU � GP¦B "2#
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Solving eqn "2# one _nds all unknown boundary values\ and the internal values are computed
appropriately "Brebbia et al[\ 0873^ Brebbia and Domingues\ 0873#[

Similarly\ for elastodynamic one can adopt the Gra.s| reciprocal theorem to _nd]

Cki"Q\ s# g
t

9

ui"s\ t# f "t−t# dt � g
t

9 gG
u�ki"Q\ t−t^ s:f #pi"Q\ t# dG dt

¦g
t

9 gG
ui"Q\ t#p�ki"Q\ t−t^ s:f # dG dt¦g

t

9 gV
u�ki"q\ t−t^ s:f #bi"q\ t# dV dt "3#

where u�ki and p�ki are fundamental values\ or general Stokes| state "Mansur\ 0877^ Stokes\ 0738^
Karabalis and Beskos\ 0873#\ obtained by choosing appropriately the impulse distribution f "t# in
eqn "3# and Cki is an independent free term\ similar to those obtained for elastostatic formulations[

Adopting the following unit impulse distribution along a time step Dt "Coda\ 0882^ Coda and
Venturini\ 0885aÐc#\

f "t# � ðH"t#−H"t−Dt#Ł:Dt "4#

in which H"t# is the Heaviside function\ eqn "3# becomes]

Cki"Q\ s# g
t

t−Dt

ui"s\ t#
Dt

dt � g
t

9 gG
u�ki"Q\ t^ s\ t#pi"Q\ t# dG dt¦

−g
t

9 gG
ui"Q\ t#p�ki"Q\ t^ s\ t# dG dt¦g

t

9 gV
u�ki"q\ t^ s\ t#bi"q\ t# dV dt "5#

Although any time approximation function may be used together with the adopted fundamental
solution "Heaviside load function#\ the constant approximation has been chosen due to its e.ciency
and accuracy observed in many numerical analyses carried out[

In eqn "5#\ the spatial integrals are performed by adopting the same boundary elements and
internal cells described for the elastostatic case[ Both singular and non!singular collocation
approaches are considered "Coda and Venturini\ 0884d#[ The singular integrals are carried out by
a direct scheme based on the Kutt|s quadrature formula "Kutt\ 0864^ Coda and Venturini\ 0884c#[
The classical Gauss| integration scheme has been adopted to carry out the non!singular\ together
with the well!known element sub!division technique "Lachat and Watson\ 0865#[

After performing the described time and spatial element integrations one achieves the _nal set
of algebraic equations for the elastodynamic problem]

HuUu � GuPu "6#

in which u � 0\ [ [ [ \ Nt and summation is implied in u[
Due to its nature\ the fundamental solution vanishes after some period of time\ therefore the

matrices are computed only for a limited number of time steps given by\

Nt �
dmax

C1Dt
¦0 "7#

where dmax is de_ned as the maximum length inside the discretized solid[
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2[ Frame structure algebraic relations

In order to consider either the 2D medium reinforced by internal bars or connected to 2D
frames\ it is necessary to write beam FEM algebraic relations properly modi_ed to assure good
numerical answers using a simple and reliable scheme[ The algebraic beam relations\ for static or
dynamic elastic analyses\ can be derived from the general formulation of the _nite element method
"Zienkiewicz\ 0879^ Clough and Penzien\ 0864^ Bathe\ 0871#[

Having derived properly the FEM algebraic relations of a frame element considering mass and
damping terms the following matrix equation can be easily written\

HU¦CUþ¦MUÝ � GP¦F "8#

where the BEM notation has been adopted for convenience[ Herein\ mass\ sti}ness and damping
matrices are denoted by M\ H and C respectively^ while Uþ and UÝ are velocity and acceleration
vectors and F represents the body and concentrated forces[

In order to make simple the coupling between BEM and FEM sets of algebraic equations\ the
interface or interactive equivalent nodal forces are kept into their expanded forms\ given by the
product GP[ In this sense\ G is called the consistent lumping matrix[

The FEM formulation is taken in this work only to approach simple beam elements for which
BernoulliÐNavier hypothesis is assumed to govern the strain distribution over the cross section[
Cubic approximations are chosen to approach transversal displacements\ while linear shape func!
tions are adopted to approach longitudinal and torsional displacements[ The distributed surface
load is assumed linear in the longitudinal direction and constant along the circumferential direction
as it has been made to de_ne the BEM cylindrical element[ Figure 1 shows the relevant nodal
values taken to write the algebraic equations\ three translations\ three rotations\ three forces and
the twisting moments de_ned at each node[

The matrices H and M shown in eqn "8# are the standard ones easily found in the literature
when the described approximations are adopted\ while the distributed interactive forces give the
following lumping matrix G\

Fig[ 1[ Beam _nite element^ degrees of freedom[
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where L and R represent the following beam parameters] length and radius\ respectively[
In order to integrate eqn "8# the adopted time step algorithm was the well!known Newmark b

scheme\ which is algebraically represented by "Warburton\ 0865#\

$M¦
0
1

"Dt#C¦b"Dt#1H%Us¦0 � "Dt#1 ðbGPs¦0¦"0−1b#GPs¦bGPs−0Ł

¦"Dt#1 ðb"B¦F#s¦0¦"0−1b#"B¦F#s¦b"B¦F#s−0Ł

¦ð1M−"Dt#1"0−1b#HŁUs−$M−
0
1

"Dt#C¦b"Dt#1H%Us−0 "00#

After considering either the above integration scheme or any other alternative procedure\ eqn
"8# can be properly rearranged to be represented by the same form adopted to express the BEM
relations\ as follows]

HU � GP¦A "01#

where A is an independent vector and U and P are the actual problem variables[

3[ BEM:FEM coupling

In order to couple BEM with FEM formulations\ the classical sub!region technique has been
adopted here[ This procedure is very general\ allowing combinations of many sub!domains dis!
cretized by either FEM or BEM[ As the _nal matrices contain blocks of zeros and can be partially
symmetric\ several solution schemes may be adopted to achieve the unknown values of U and P

"Stamos and Beskos\ 0884#[
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Taking two sub!regions Vi and Vj\ with a common interface Gij\ one can write eqn "01# for each
one to _nd\

HiUi � GiPi¦Ai "02a#

HjUj � GjPj¦Aj "02b#

Taking into account only the values along the interface Gij\ the equilibrium and geometrical
compatibility conditions are represented by\

Uij � Uji and Pij � −Pji "03a\b#

where the superscripts indicate the sub!regions belonging to the interface[
The vectors Uij and Pij\ in eqn "02#\ contain node displacements and tractions or interactive

forces de_ned along the interface[ Writing again eqn "02#\ now dividing the boundary value vectors
into two parts\ interface values\ Uij and Pij and external values\ Uie and Pie\ taking into account the
equilibrium and displacement compatibility conditions\ eqn "03#\ and joining them together the
_nal system of algebraic equations for the combined body is\

$
Hie Hij −Gij 9

9 Hji Gji Hje%

F

G

j

J

G

f

Uie

Uij

Pji

Uje

J

G

f

F

G

j

� $
Gie Gij 9 9

9 9 Gje Gji%

F

G

j

J

G

f

Pie

PÞij

Pje

PÞjji

J

G

f

F

G

j

¦6
Ai

Aj7 "04#

where PÞij represents prescribed surface forces along the contact[
As already mentioned before\ expression "04# can be easily generalised for the multiple sub!

region case[
For dynamic problems\ it is important to take into account appropriate rearrangements of eqns

"6# and "8# concerning three consecutive time steps for both _nite and boundary element time
integration schemes[ It is also important to observe that compatibility is enforced only for node
translations[ Rotations have been left free\ although their compatibility could be enforced as well
if the proper integral representation for the boundary element formulation were considered[ This
alternative procedure is not an easy task due to singularities that may be found at non!smooth
internal contact points[ However\ the numerical convergence of the solution obtained for many
performed elastostatic and elastodynamic analyses indicates that the non!conforming scheme
adopted here is a reliable coupling model[ It is worth noting that for a single and straight pile the
torsional rotation should be constrained[

4[ Examples

Three examples have been selected to illustrate the formulation presented in this work[ In these
cases sti}ened domains subjected to static and dynamic loads are analysed[

In the _rst example\ the elastic half plane medium reinforced by a 9[50 m diameter circular cross
section pile 5[0 m in length is subjected to sudden longitudinal\ lateral and ~exural loads\ as can
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Fig[ 2[ Pile geometry and applied loads[

Fig[ 3[ Free surface discretization[

be seen in Fig[ 2[ Figure 3 presents the half space free surface discretization adopted to run this
problem[ In order to complete the discretization\ ten _nite beam elements are taken to describe
the pile[ The static results are compared with the numerical solution presented in Vallaban and
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Fig[ 4[ Vertical load case] "a# vertical displacements^ "b# interface forces[

Sivakumar "0875# where the pile is con_ned in a 5[0×5[0×01[1 m2 parallelepiped box region\
for which horizontal displacements along the vertical sides are constrained\ while null vertical
displacements are enforced over the horizontal bottom plane[ The same analysis has also been
made\ assuming the soil media as an in_nite half space[ Static and dynamic analyses have been
carried out assuming the following material properties] Epile � 10\999\999 N m−1^ Esoil � 109\999
N m−1^ npile � 9[1^ nsoil � 9[1^ rpile � 6999 kg m−2 and rsoil � 1999 kg m−2[ For this dynamic
analysis\ some additional data have been assumed] Dt � 9[1 s and the pile viscous damping
parameter av � 9[3[

After running the static case\ all computed results together with the solution obtained by
Vallaban and Sivakumar "0875# are displayed for comparison\ in Figs 4Ð6[ As can be seen\ those
solutions agree very well with the exception of one case[ The main di}erences are probably due to
the kind of boundary conditions assumed for each case[ Having observed the good performance
achieved for the static case\ the analysis has been continued to verify how the formulation behaves
when dealing with dynamic problems[ For that case\ the computed results are displayed in Figs 7Ð
00[ As can be seen\ those numerical values obtained by using the proposed coupled formulation
are very stable[ Therefore\ the transient BEM formulation achieved by using the particular fun!
damental solution due to distributed unit impulse gives stable results even when its algebraic
relations are written for problems exhibiting a reasonable geometric complexity\ in this case
modi_ed by coupling them with _nite element relations[

In the second example\ a short reinforced beam is analysed when submitted to a sudden tangential
force[ The beam is now treated as a three!dimensional domain\ whereas the reinforcement bars
are modelled by _nite elements[ In order to run this problem\ the following material properties
were assumed for the continuum media] n � 9[29^ Ec � 9[41×097 N m−1\ r � 0[7×09−2 kg m−2[
The time interval Dt � 9[822×09−1 s was taken to perform the integral along the time[ The
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Fig[ 5[ Horizontal load case] "a# horizontal displacements^ "b# interface forces[

Fig[ 6[ Horizontal displacements for the applied moment[

tangential force applied over the beam end is assumed to be proportional to the Heaviside
distribution along the time[ In space\ the applied load shows a parabolic shape de_ned by the
maximum value\ p9 � 0999 N m−1\ at centre and zero at the edges of the loaded side\ as shown in
Fig[ 01[ No relaxed condition has been imposed to run this problem\ therefore the expected results
exhibit the complete bending behaviour due to both normal and shear deformations[ The results
computed by considering the non!reinforced beam are practically the same ones obtained by
Araujo "0883#\ where the Dirac|s Delta fundamental solution with linear time approximation and
Dt � 9[41×09−1 s were adopted[ Figure 02 shows the reinforced body cross section with two inside
bars of 9[1 m diameter[ For this case\ Young modulus Eb � 9[15×098 N m−1 has been assumed\
while the same mass density was adopted[

Again\ the accuracy or the formulation is observed "see Fig[ 03#\ when comparing the dynamic
responses for the non reinforced case[ As in the _rst example\ the results are very stable\ showing
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Fig[ 7[ Dynamic displacements at pile top end[

Fig[ 8[ Dynamic vertical displacements along the pile under vertical loads[

that the modi_cation introduced by the _nite element relations does not disturb the performance
of the original BEM approach[

The last numerical example consists of analysing the movements of two towers connected to the
2D half space[ One third of each tower is inserted into the 2D domain to guarantee a ~exible
connection[ A suddenly applied concentrated load "3\999\999# is applied to the free end of one
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Fig[ 09[ Dynamic horizontal displacements and contact forces along the pile under horizontal loads[

Fig[ 00[ Dynamic horizontal displacement along the pile due to the applied moment[

tower\ as illustrated in Fig[ 04a in which the geometry of the structural system is given[ Fifteen
cubic _nite elements have been adopted to discretize each tower[ The numerical solution has been
obtained by assuming the following parameters for the towers and the 2D half space "units] dm\
kg and s#[

Towers] Young|s modulus "E � 1[0×098#\ mass density "r � 5#\ transversal section area
"A � 74[5#\ inertia momentum "I � 0055[55#[
Half space media] Young|s modulus "E � 1[5×096#\ mass density "r � 1# and Poisson|s ratio
"n � 9[22#[
Time step] Dt � 9[91153 s[
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Fig[ 01[ Beam geometry and discretization[

Fig[ 02[ Beam cross section with reinforcing bars[

Fig[ 03[ Free end displacements for the reinforced and non reinforced cases[
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Fig[ 04[ Two _xed towers and a frame connected to the half space[ Geometry and load] towers] Young|s modulus
"E � 1[0×098#\ mass density "r � 5#\ transversal section area "A � 74[5#\ inertia momentum "I � 0055[55#^ half!space
media] Young|s modulus "E � 1[5×096#\ mass density "r � 1# and Poisson|s ratio "n � 9[22#^ time!step] Dt � 9[91153
s[

Fig[ 05[ Top of towers horizontal displacement[

The results obtained in terms of displacements\ for the two independent towers\ are displayed
in Fig[ 05[ As can be seen\ the loaded tower movements exhibit a little geometrical damping\ while
the free tower is excited by waves propagating through the soil[

This analysis is extended to analyse the behaviour of a two dimensional frame connected to the
half space[ The two tower ends are restrained by assuming between them a ~exible horizontal
beam\ as illustrated in Fig[ 04b[ The displacement pro_le obtained for this situation is rather
di}erent than the previous case "see Fig[ 06# pointing out the in~uence of the increased sti}ness of
the whole system[ However\ the time behaviour is quite similar\ because the e}ects of the sti}ness
and mass variations compensate each other[



H[B[ Coda\ W[S[ Venturini : International Journal of Solids and Structures 25 "0888# 3678Ð3793 3792

Fig[ 06[ Horizontal displacement at frame top[

5[ Conclusions

The coupling of a _nite element beam with a three!dimensional continuum body modelled
by the boundary element method for both static and dynamic problems has been successfully
implemented[ The proposed technique is general and very useful for practical purposes such as
soil!structure interaction and composite materials[ The examples chosen in this article illustrate
the high accuracy and stability achieved by this proposed numerical model[ Although the technique
is already suitable for practical application\ improvements may be achieved[ For instance\ a more
general hole element to precisely describe curved holes inside the continuum media can be easily
implemented to improve the contact model[ Physical non!linear behaviour over the contact between
the continuum media and the beam element can eliminate undesirable stress concentrations as
well[ This will reduce the wave shape of the interface stresses improving the step by step procedure
performance[
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